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1 Random Variables

1.1 Informal Definition

Random Variables

� The term random variable has a technical definition that we discussed in
Psychology 310

� For our purposes, it will suffice to consider a random variable to be a
random process with numerical outcomes that occur according to a distri-
bution law

Example 1 (Uniform (0,1) Random Variable). A random process that generates
numbers so that all values between 0 and 1, inclusive, are equally likely to occur
is said to have a U(0,1) distribution.



1.2 Manifest and Latent Random Variables

Manifest and Latent Variables

Manifest and Latent Variables

� In advanced applications, we will refer to manifest and latent random
variables

� A variable is manifest if it can be measured directly

� A variable is latent if it is an assumed quantity that cannot be measured
directly

� The dividing line between manifest and latent variables is often rather
imprecise

Example 2 (Manifest Variable). Your grade on an exam is a manifest random
variable.

1.3 Continuous and Discrete Random Variables

� A continuous random variable has an uncountably infinite number of pos-
sible outcomes because it can take on all values over some range of the
number line

� A discrete random variable takes on only a countable number of discrete
outcomes

� As we saw in Psychology 310, discrete random variables can assign a prob-
ability to a particular numerical outcome, while continuous random vari-
ables cannot

Example 3 (Discrete Random Variable). Suppose you assign the number 1 to
all people born male, and 2 to all people born female. This random variable is
discrete, because it takes on only the values 1 and 2.

2 Probability Distributions

2.1 Probability Models

Using Probability Distributions

� Probability distributions are frequently used to provide succinct models
for quantities of scientific interest

� We observe distributions of data, and assess how well the distributions
conform to the specified model
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� While observing the distribution of the data, we may hypothesize the
general family of the distribution, but leave open the question of the values
of the parameters

� In that case, we talk of free parameters to be estimated

Using Probability Distributions More Complex Applications

Using Probability Distributions

� In more complex applications, such as multilevel modeling, we may model
data emanating from a particular distribution family at one level (say kids
within a school)

� At another level, we might model the parameters for the schools as having
a distribution across schools

� For example, we might hypothesize that the parameters across schools
have a normal distribution

� In that case, the size of the variance of that distribution would indicate
how much the schools show variation on a particular characteristic

� In the slides that follow, we shall examine some of the more useful distri-
butions we will encounter early in the course

2.2 The Normal Distribution

The Normal Distribution

The Normal Distribution

� The normal distribution is a widely used continuous distribution

� The normal distribution family is a two-parameter family

� Each normal distribution is characterized by two parameters, the mean µ
and the standard deviation σ.

� Shaped like a bell, the normal pdf is sometimes referred to as the bell
curve

� The central limit theorem, discussed on pages 13–14 of Gelman & Hill,
explains why many quantities have a distribution that is approximately
normal

� The normal distribution family is closed under linear transformations, i.e.,
any normal distribution may be transformed into any other normal distri-
bution by a linear transformation
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2.3 The Multivariate Normal Distribution

The Multivariate Normal Distribution

The Multivariate Normal Distribution

� The multivariate normal distribution is a continuous multivariate distri-
bution having two matrix parameters, the vector of means µ and the
covariance matrix Σ

� Any linear combination of multi-normal variables has a normal distribu-
tion

� As we saw in Psychology 310, the mean and variance of the linear combi-
nation is determined by µ, Σ, and the linear weights

2.4 The Lognormal Distribution

The Lognormal Distribution

� If X is normally distributed, then y = ex is said to have a lognormal
distribution. If Y is lognormally distributed, the logarithm of Y has a
normal distribution

� In R, dlnorm gives the density, plnorm gives the distribution function,
qlnorm gives the quantile function, and rlnorm generates random deviates

The Lognormal Distribution Some Basic Facts

The Lognormal Distribution

� It is common, when referring to a normal distribution, to use the abbre-
viations N(µ, σ) or N(µ, σ2).

� It is important to realize that, when referring to a lognormal distribution
for a variable Y , the convention is to refer to the parameters µ and σ from
the corresponding normal variable X = ln(Y )

� In this case, the actual mean and variance of Y are not µ and σ2, but
rather are

E(Y ) = eµ+
1
2σ

2
,

V ar(Y ) = (eσ
2 − 1)e2µ+σ2
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Example 4 (The Lognormal Distribution). Here is a picture comparing the log-
normal and corresponding normal distribution.
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The Lognormal Distribution Applications

Applications of the Lognormal

� When independent processes combine multiplicatively, the result can be
lognormally distributed

� For a detailed and entertaining discussion of the lognormal distribution,
see the article by Limpert, Stahel, and Abbt (2001) in the reading list

2.5 The Binomial Distribution

The Binomial Distribution

� This discrete distribution is one of the foundations of modern categorical
data analysis

� The binomial random variable X represents the number of “successes” in
N outcomes of a binomial process

� A binomial process is characterized by

– N independent trials

– Only two outcomes, arbitrarily designated “success” and “failure”

– Probabilities of success and failure remain constant over trials
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� Many interesting real world processes only approximately meet the above
specifications

� Nevertheless, the binomial is often an excellent approximation

Characteristics of the Binomial Distribution

� The binomial distribution is a two-parameter family, N is the number of
trials, p the probability of success

� The binomial has pdf

Pr(X = r) =
(
N

r

)
pr(1− p)N−r

� The mean and variance of the binomial are

E(X) = Np

V ar(X) = Np(1− p)

Normal Approximation to the Binomial

� TheBinomial(N, p) distribution is well approximated by aNormal(Np,Np(1−
p)) distribution as long as p is not too far removed from .5 and N is rea-
sonably large

� A good rule of thumb is that both Np and N(1− p) must be greater than
5

� The approximation can be further improved by correcting for continuity

2.6 The Poisson Distribution

The Poisson Distribution

� When events arrive without any systematic “clustering,” i.e., they arrive
with a known average rate in a fixed time period but each event arrives
at a time independent of the time since the last event, the exact integer
number of events can be modeled with the Poisson distribution

� The Poisson is a single parameter family, the parameter being λ, the ex-
pected number of events in the interval of interest

� For a Poisson random variable X, the probability of exactly r events is

Pr(X = r) =
λre−λ

r!
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Characteristics of the Poisson Distribution

� The Poisson is used widely to model occurrences of low probability events

� A random variable X having a Poisson distribution with parameter λ has
mean and variance given by

E(X) = λ

V ar(X) = λ

3 Sampling Distributions

Sampling Distributions

� As discussed in your introductory course, we frequently sample from a
population and obtain a statistic as an estimate of some key quantity

� Over repeated samples, these estimates show variability

� This variability is like noise, degrading the signal that is the parameter

� The known or hypothetical sampling distribution of the statistic allows us
to gauge how accurate our parameter estimate is (at least in the long run)

Sampling Distributions An Example

Sampling Distributions — An Example

� Suppose we take an opinion poll of N = 100 people at random, and 47%
of them favor some position

� The question is, what does that tell us about the proportion of people in
the population favoring the position?

Sampling Distributions An Example

Sampling Distributions — An Example

� In your introductory course, you learned as a simple consequence of the
binomial distribution that if the population proportion is p, the sample
proportion p̂ has a sampling distribution that is approximately normal,
with mean p and variance p(1− p)/N

� For any hypothesized value of p, this tells us, through our knowledge of
the normal distribution, how likely we would be to observe a value of .47

� We can use this, in turn, to evaluate which values of p are “reasonable” in
some sense
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4 Confidence Intervals

Confidence Intervals

� A confidence interval is a numerical interval constructed on the basis of
data

� Such an interval is called a 95% (or .95) confidence interval if it is con-
structed so that it contains the true parameter value at least 95% of the
time in the long run

� There are a variety of methods available for constructing confidence inter-
vals

4.1 The Classic Normal Theory Approach

Normal Theory Confidence Intervals

� In Psychology 310 we leared about simple symmetric confidence intervals
based on the normal distribution

� If a statistic θ̂ used to estimate a parameter θ has a normal sampling
distribution with mean θ and sampling variance V ar(θ̂), then we may
construct a 95% confidence interval for θ as

θ̂ ± 1.96
√
V ar(θ̂)

� In general, a consistent estimator V̂ ar(θ̂) may be substituted for V ar(θ̂)
in the above

4.2 Confidence Intervals on Linear Transformations

Confidence Intervals on Linear Combinations

� As we saw in Psychology 310, frequently linear combinations of parameters
are of interest

� In that case, we can construct appropriate point estimates, standard er-
rors, test statistics, and confidence intervals

� Methods are discussed in detail in the Psychology 310 handout, A Unified
Approach to Some Common Statistical Tests
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4.3 Confidence Intervals Via Simulation

Confidence Intervals Via Simulation

� In some cases, we are interested in a function of parameters

� We know the distribution of individual parameter estimates, but we don’t
have a convenient expression for the distribution of the function of the
parameter estimates

� In this case, we can simulate the distribution of the function of parameter
estimates using random number generation

� To generate the 95% confidence interval, we extract the .025 and .975
quantiles of the resulting simulated data

Confidence Intervals Via Simulation An Example

Example 5 (Confidence Intervals Via Simulation). � An example of the sim-
ulation approach can be found on page 20 of Gelman & Hill

� They assume that, with N = 500 per group, the distribution of the sample
proportion can be approximated very accurately with a normal distribu-
tion

� In the problem of interest, the experimenter has observed sample propor-
tions p̂1 and p̂2, each based on samples of 500

� However, the experimenter wishes to construct a confidence interval on
p1/p2.

Confidence Intervals Via Simulation An Example

Example 6 (Confidence Intervals Via Simulation). � The experimenter pro-
ceeds by constructing 10000 independent replications of p̂1 and 10000 repli-
cations of p̂2

� For each pair, the ratio p̂1/p̂2 is computed

� This creates a set of 10000 replications of the ratio of proportions

� The 95% confidence interval is then constructed from the .025 and .975
quantiles of this set of 10000 ratios
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5 Hypothesis Testing

Hypothesis Testing

� Gelman and Hill make a number of interesting points in their brief discus-
sion

� They suggest viewing a hypothesis as a model about the data

� Testing the hypothesis involves comparing the behavior of the data with
the data predicted by the model

� For example, if proportions are showing their standard random variation,
this implies something about the size of that variation

� They examine this notion in an extensive example
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