An Introduction to R

Contents

1	Random Variables		1
	1.1	Informal Definition	1
	1.2	Manifest and Latent Random Variables	2
	1.3	Continuous and Discrete Random Variables	2
2	Probability Distributions 2		
	2.1	Probability Models	2
	2.2	The Normal Distribution	3
	2.3	The Multivariate Normal Distribution	4
	2.4	The Lognormal Distribution	4
	2.5	The Binomial Distribution	5
	2.6	The Poisson Distribution	6
3	San	npling Distributions	7
4	Confidence Intervals		8
	4.1	The Classic Normal Theory Approach	8
	4.2	Confidence Intervals on Linear Transformations	8
	4.3	Confidence Intervals Via Simulation	9
5	Hyp	pothesis Testing	10

1 Random Variables

1.1 Informal Definition

Random Variables

- The term $random\ variable$ has a technical definition that we discussed in Psychology 310
- For our purposes, it will suffice to consider a random variable to be a random process with numerical outcomes that occur according to a distribution law

Example 1 (Uniform (0,1) Random Variable). A random process that generates numbers so that all values between 0 and 1, inclusive, are equally likely to occur is said to have a U(0,1) distribution.

1.2 Manifest and Latent Random Variables

Manifest and Latent Variables

Manifest and Latent Variables

- In advanced applications, we will refer to *manifest* and *latent* random variables
- A variable is manifest if it can be measured directly
- A variable is latent if it is an assumed quantity that cannot be measured directly
- The dividing line between manifest and latent variables is often rather imprecise

 $Example\ 2$ (Manifest Variable). Your grade on an exam is a manifest random variable.

1.3 Continuous and Discrete Random Variables

- A continuous random variable has an uncountably infinite number of possible outcomes because it can take on all values over some range of the number line
- A discrete random variable takes on only a countable number of discrete outcomes
- As we saw in Psychology 310, discrete random variables can assign a probability to a particular numerical outcome, while continuous random variables cannot

Example 3 (Discrete Random Variable). Suppose you assign the number 1 to all people born male, and 2 to all people born female. This random variable is discrete, because it takes on only the values 1 and 2.

2 Probability Distributions

2.1 Probability Models

Using Probability Distributions

- Probability distributions are frequently used to provide succinct models for quantities of scientific interest
- We observe distributions of data, and assess how well the distributions conform to the specified model

- While observing the distribution of the data, we may hypothesize the general family of the distribution, but leave open the question of the values of the parameters
- In that case, we talk of *free parameters* to be estimated

Using Probability Distributions More Complex Applications

Using Probability Distributions

- In more complex applications, such as multilevel modeling, we may model data emanating from a particular distribution family at one level (say kids within a school)
- At another level, we might model the parameters for the schools as having a distribution across schools
- For example, we might hypothesize that the parameters across schools have a normal distribution
- In that case, the size of the variance of that distribution would indicate how much the schools show variation on a particular characteristic
- In the slides that follow, we shall examine some of the more useful distributions we will encounter early in the course

2.2 The Normal Distribution

The Normal Distribution

The Normal Distribution

- The normal distribution is a widely used continuous distribution
- The normal distribution family is a two-parameter family
- Each normal distribution is characterized by two parameters, the mean μ and the standard deviation σ .
- Shaped like a bell, the normal pdf is sometimes referred to as the *bell curve*
- The *central limit theorem*, discussed on pages 13–14 of Gelman & Hill, explains why many quantities have a distribution that is approximately normal
- The normal distribution family is *closed under linear transformations*, i.e., any normal distribution may be transformed into any other normal distribution by a linear transformation

2.3 The Multivariate Normal Distribution

The Multivariate Normal Distribution

The Multivariate Normal Distribution

- The multivariate normal distribution is a continuous multivariate distribution having two matrix parameters, the vector of means μ and the covariance matrix Σ
- Any linear combination of multi-normal variables has a normal distribution
- As we saw in Psychology 310, the mean and variance of the linear combination is determined by μ , Σ , and the linear weights

2.4 The Lognormal Distribution

The Lognormal Distribution

- If X is normally distributed, then $y = e^x$ is said to have a *lognormal* distribution. If Y is lognormally distributed, the logarithm of Y has a normal distribution
- In R, dlnorm gives the density, plnorm gives the distribution function, qlnorm gives the quantile function, and rlnorm generates random deviates

The Lognormal Distribution Some Basic Facts

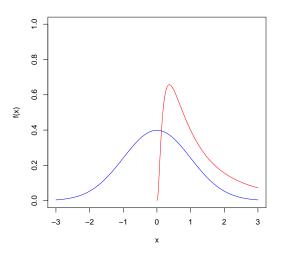
The Lognormal Distribution

- It is common, when referring to a normal distribution, to use the abbreviations $N(\mu, \sigma)$ or $N(\mu, \sigma^2)$.
- It is important to realize that, when referring to a lognormal distribution for a variable Y, the convention is to refer to the parameters μ and σ from the corresponding normal variable $X = \ln(Y)$
- In this case, the actual mean and variance of Y are not μ and σ^2 , but rather are

$$E(Y) = e^{\mu + \frac{1}{2}\sigma^2},$$

$$Var(Y) = (e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$$

Example 4 (The Lognormal Distribution). Here is a picture comparing the lognormal and corresponding normal distribution.



The Lognormal Distribution Applications

Applications of the Lognormal

- When independent processes combine multiplicatively, the result can be lognormally distributed
- For a detailed and entertaining discussion of the lognormal distribution, see the article by Limpert, Stahel, and Abbt (2001) in the reading list

2.5 The Binomial Distribution

The Binomial Distribution

- This discrete distribution is one of the foundations of modern categorical data analysis
- The binomial random variable X represents the number of "successes" in N outcomes of a *binomial process*
- A binomial process is characterized by
 - N independent trials
 - Only two outcomes, arbitrarily designated "success" and "failure"
 - Probabilities of success and failure remain constant over trials

- Many interesting real world processes only approximately meet the above specifications
- Nevertheless, the binomial is often an excellent approximation

Characteristics of the Binomial Distribution

- The binomial distribution is a two-parameter family, N is the number of trials, p the probability of success
- The binomial has pdf

$$Pr(X=r) = \binom{N}{r} p^r (1-p)^{N-r}$$

• The mean and variance of the binomial are

$$E(X) = Np$$
$$Var(X) = Np(1-p)$$

Normal Approximation to the Binomial

- The Binomial(N, p) distribution is well approximated by a Normal(Np, Np(1-p)) distribution as long as p is not too far removed from .5 and N is reasonably large
- A good rule of thumb is that both Np and N(1-p) must be greater than 5
- The approximation can be further improved by *correcting for continuity*

2.6 The Poisson Distribution

The Poisson Distribution

- When events arrive without any systematic "clustering," i.e., they arrive with a known average rate in a fixed time period but each event arrives at a time independent of the time since the last event, the exact integer number of events can be modeled with the Poisson distribution
- The Poisson is a single parameter family, the parameter being λ , the expected number of events in the interval of interest
- For a Poisson random variable X, the probability of exactly r events is

$$Pr(X=r) = \frac{\lambda^r e^{-\lambda}}{r!}$$

Characteristics of the Poisson Distribution

- The Poisson is used widely to model occurrences of low probability events
- A random variable X having a Poisson distribution with parameter λ has mean and variance given by

$$E(X) = \lambda$$
$$Var(X) = \lambda$$

3 Sampling Distributions

Sampling Distributions

- As discussed in your introductory course, we frequently sample from a population and obtain a statistic as an estimate of some key quantity
- Over repeated samples, these estimates show variability
- This variability is like noise, degrading the signal that is the parameter
- The known or hypothetical *sampling distribution* of the statistic allows us to gauge how accurate our parameter estimate is (at least in the long run)

Sampling Distributions An Example

Sampling Distributions — An Example

- Suppose we take an opinion poll of N = 100 people at random, and 47% of them favor some position
- The question is, what does that tell us about the proportion of people in the population favoring the position?

Sampling Distributions An Example

Sampling Distributions — An Example

- In your introductory course, you learned as a simple consequence of the binomial distribution that if the population proportion is p, the sample proportion \hat{p} has a sampling distribution that is approximately normal, with mean p and variance p(1-p)/N
- For any hypothesized value of p, this tells us, through our knowledge of the normal distribution, how likely we would be to observe a value of .47
- We can use this, in turn, to evaluate which values of *p* are "reasonable" in some sense

4 Confidence Intervals

Confidence Intervals

- A *confidence interval* is a numerical interval constructed on the basis of data
- Such an interval is called a 95% (or .95) confidence interval if it is constructed so that it contains the true parameter value at least 95% of the time in the long run
- There are a variety of methods available for constructing confidence intervals

4.1 The Classic Normal Theory Approach

Normal Theory Confidence Intervals

- In Psychology 310 we leared about simple symmetric confidence intervals based on the normal distribution
- If a statistic $\hat{\theta}$ used to estimate a parameter θ has a normal sampling distribution with mean θ and sampling variance $Var(\hat{\theta})$, then we may construct a 95% confidence interval for θ as

$$\hat{\theta} \pm 1.96 \sqrt{Var(\hat{\theta})}$$

• In general, a consistent estimator $\widehat{Var}(\hat{\theta})$ may be substituted for $Var(\hat{\theta})$ in the above

4.2 Confidence Intervals on Linear Transformations

Confidence Intervals on Linear Combinations

- As we saw in Psychology 310, frequently linear combinations of parameters are of interest
- In that case, we can construct appropriate point estimates, standard errors, test statistics, and confidence intervals
- Methods are discussed in detail in the Psychology 310 handout, A Unified Approach to Some Common Statistical Tests

4.3 Confidence Intervals Via Simulation

Confidence Intervals Via Simulation

- In some cases, we are interested in a function of parameters
- We know the distribution of individual parameter estimates, but we don't have a convenient expression for the distribution of the function of the parameter estimates
- In this case, we can simulate the distribution of the function of parameter estimates using random number generation
- \bullet To generate the 95% confidence interval, we extract the .025 and .975 quantiles of the resulting simulated data

Confidence Intervals Via Simulation An Example

Example 5 (Confidence Intervals Via Simulation).An example of the simulation approach can be found on page 20 of Gelman & Hill

- They assume that, with N = 500 per group, the distribution of the sample proportion can be approximated very accurately with a normal distribution
- In the problem of interest, the experimenter has observed sample proportions \hat{p}_1 and \hat{p}_2 , each based on samples of 500
- However, the experimenter wishes to construct a confidence interval on p_1/p_2 .

Confidence Intervals Via Simulation An Example

Example 6 (Confidence Intervals Via Simulation). • The experimenter proceeds by constructing 10000 independent replications of \hat{p}_1 and 10000 replications of \hat{p}_2

- For each pair, the ratio \hat{p}_1/\hat{p}_2 is computed
- This creates a set of 10000 replications of the ratio of proportions
- The 95% confidence interval is then constructed from the .025 and .975 quantiles of this set of 10000 ratios

5 Hypothesis Testing

Hypothesis Testing

- Gelman and Hill make a number of interesting points in their brief discussion
- They suggest viewing a hypothesis as a model about the data
- Testing the hypothesis involves comparing the behavior of the data with the data predicted by the model
- For example, if proportions are showing their standard random variation, this implies something about the size of that variation
- They examine this notion in an extensive example